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Abstract

Query processing in parallel database systems stands or falls by efficient resource usage including CPU
scheduling, I/O processing and memory allocation. Up to now, most research has focussed on load
balancing issues concerning several resources of the same kind only, i.e. balancing either CPU load
or I/0O load exclusively. In this paper, we present floating probe, a novel strategy to utilize parallel
resources in a shared-everything environment efficiently. The key idea of floating probe is dynamic
load balancing of CPU and I/O resources by overlapping I/O-bound build phase and CPU-bound
probe phase of pipeline segments. The extent of interleaving is only limited by data dependencies.
Simulation results show, that floating probe achieves considerably shorter execution times with less
memory demands than conventional pipelining strategies.

Keywords parallel databases, parallel query processing, dynamic load balancing, efficient resource
utilization

INTRODUCTION

Parallel query processing is the key to the performance improvements demanded by modern database
applications. Pipelining parallelism is of particular interest since it is easier to control and less resource
consuming than independent parallelism yet offering a huge potential of parallelism. Moreover, for linear
query trees, pipelining is the only possibility to exploit inter-operator parallelism (Hasan and Motwani,
1994).

The two major aspects of pipeline processing that need to be considered carefully are the processor
scheduling—the actual parallelization—and the I/O processing to support the scheduling.

So far, much work has been devoted to different processor scheduling strategies. Schneider and DeWitt
study pipelining techniques on right-deep trees of hash join operators, proposing two distinct phases of
processing (Schneider and DeWitt, 1990): Firstly, during the build phase, the inner relations of the joins
are read from disk and hash tables are built in parallel. Secondly, during the probe phase, the outer
relation is piped bottom-up through all operators.

Figure 1 shows an example for a pipeline segment. R; and I; denote the inner input relations and the
intermediate results, respectively. I; denotes the outer input relation of the segment. Each input relation
is either a base relation or the result of another pipeline segment. The R; are all materialized on disk
while I; is to be read from disk or received directly from another process.

Figure 2 depicts the functional decomposition of the example into build phase and probe phase. B;
denotes the operation to build the hash table H; and P; denotes the operation to probe I; against H;.

Considering also the physical memory limits, Chen et al. introduce a decomposition of the right-
deep trees into pipeline segments, which fit into main memory (Chen et al., 1992). Thus, I/O caused by
swapping can be avoided. The segments are evaluated one at a time with maximal computing resources at
their disposal. The processor scheduling is a grouping of processors which are assigned to single operators
according to work load estimations. Shekita et al. extend this method to capture also bushy operator
trees by decomposing bushy trees into right-deep pipeline segments, thus, combining the flexibility of
bushy operator trees with pipelining execution. Furthermore, not only join operators are considered but
the more general notion of blocking and non-blocking operators is used: a pipeline segment is a sequence
of non-blocking operators, which produce output on-the-fly—e.g. selection, projection without duplicate
elimination, or the probe phase of either a hash join or a general index join. Only the last operator of the
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Figure 2: Build phase and probe phase

segment may be a blocking operator which has to collect all input before it produces any output—e.g.
sort or aggregation operators.

Though offering the high potential for performance improvements, the aforementioned techniques
proof a pitfall as soon as the actual query execution does not match the assumptions the preceding
optimization was based on. Dynamic processor scheduling helps overcome this drawback. In (Manegold
et al., 1997), we presented DTE, a strategy that serves as a transparent interface to pipelining parallelism
by dynamically assigning processors to operators and thereby achieving a near-optimal exploitation of
CPU resources. DTE avoids the major problems conventional pipelining suffers from: discretization error
and startup/shutdown delay (Ganguly et al., 1992; Srivastava and Elsesser, 1993; Wilschut and Apers,
1991; Wilschut et al., 1995).

While DTE solves most of the critical issues in CPU scheduling, the I/O processing is ignored and
hidden in the assumption that all hash tables are built before-hand, as supposed in previous work. In
general, the build phase is I/O-bound—i.e. building a hash table takes less time than reading the base
relation from disk—while the probe phase is CPU-bound as no intermediate results are to be materialized
on disk. Consequently, the execution cannot reach its optimal performance due to inefficient resource



utilization: during the build phase the CPUs are idle, while during the probe phase the I/O system is
idle.

To the authors’ best knowledge—Hong is the only one addressing the integration of I/O processing.
He proposes a scheduling algorithm that executes one CPU-bound and one I/O-bound task concurrently,
to achieve a CPU-I/O-balanced workload in total (Hong, 1992). This in turn restricts the algorithm to
scheduling of distinct data-independent tasks, only. Obviously, pipeline processing cannot benefit from
this technique.

In this paper, we propose floating probe, a novel strategy to integrate both CPU scheduling and
I/0O processing on shared-everything platforms. We suppose that an optimizer has already generated a
tree-shaped query plan and partitioned the plan in pipeline segments with the following characteristics:
(1) Only the last operator of each segment might be a blocking operator, all other operators are non-
blocking operators. The optimizer tuned the size of each segment that (2) all tables fit into main memory
and (3) the probing then can be done without intermediate I/O (cf. (Chen et al., 1992; Schneider and
DeWitt, 1990; Shekita et al., 1993)).

The key idea is to mesh build and probe phase as tightly as possibly, i.e. while conducting the probe
for a group of operators, the hash tables of the successors can be loaded in the meantime. This procedure
is subject to some constraints, e.g. during the very first build phase no probing can take place.

All segments are evaluated one after the other according to the producer/consumer data dependencies
between them. We avoid parallel evaluation of data independent pipeline segments, as no performance
improvements can be achieved that way (Shekita et al., 1993).

Floating probe establishes automatically balanced CPU and I/O workload throughout the whole
execution, yielding not only shorter execution times in total but also lowering the memory requirements
significantly.

Road-Map. The remainder of the paper is organized as follows. In the next section, we present the
basic techniques for building the hash tables and discuss the two ways of parallelizing this step. Then,
DTE, our strategy to implement the probe phase is introduced and discussed. We briefly point out
the strength of DTE compared to conventional pipelining techniques in a representative selection of
experiments. The next section concerns the problems occurring when both build and probe phase are
combined. We present floating probe and show how I/O processing can be integrated with efficient CPU
scheduling. The analysis of floating probe yields a near optimal upper bound. A simulation model and
a comparative performance evaluation verifies the previously derived results. The work is concluded by
a summary and a discussion of future work.

TABLE BUILDING PHASE

Shared-everything systems like SMPs provide uniform and parallel access to all attached disks. To exploit
I/0 parallelism we assume that each base relation is partitioned and fully declustered over all disks. Once,
this is established, I/O parallelism utilizing the full I/O bandwidth can be used for every access to the base
relations—even for exclusive access to a single relation. Furthermore, double buffering and asynchronous
I/0 allow an overlapping of CPU and I/O phases.

Building one single hash table in parallel

To build one single hash table in parallel,—i.e. using all disks and all CPUs—one thread per CPU, that
reads tuples (one at a time) from a shared buffer pool, and inserts the tuple into the hash table, is
started. Note, that CPU contention may occur if the number of threads exceeded the number of CPUs.
Obviously, this strategy provides optimal load balancing.

The only problem occurring is to bridge the gap between the shared buffer pool and the disk I/0O.
As a simple solution to this problem, we extend one of the threads with some additional functionality:
invoking asynchronous parallel I/O to read pages from disk. As the time to invoke the I/O of one page is
by approximately three orders of magnitude smaller than the time to read a single page from disk, this
additional task does not form a bottleneck.



In the reminder of this paper, we use Build(R;) to denote the parallel building of the hash table that
belongs to the i-th join within the pipeline. This includes reading R; from disk using parallel I/0.

Building multiple hash tables in parallel

With these preliminaries, two different methods for building the hash tables become feasible: building
all hash tables simultaneously and execute Build(R;) through Build(Ry) concurrently, or executing only
one single Build(R;) at a time, i.e. executing Build(R1) through Build(Rx) one after the other. Due to
the full declustering of each base relation, both strategies can exploit the full I/O bandwidth. However,
the first strategy would cause additional seek time as it has to cope with random disk access patterns
when fragments of different relations—located on the same disk—are read concurrently. In contrast to
this, the second strategy accesses larger homogeneous blocks and reduces the latency significantly. For
this reason, we use the second strategy for our further considerations.

TUPLE PROBING PHASE

Our strategy to evaluate the probe phase of pipeline segments is Data Threaded Execution (DTE) (Mane-
gold et al., 1997). In the reminder of this section, we first give a short overview of DTE and then we
present a quantitative assessment of DTE.

The Model

The key idea of DTE is to dynamically assign the available processors to the data that is to be processed.
We do this by gathering all operators of a pipeline segment into one stage and assigning all processors
to this stage. This leads to optimal load balancing and efficient resource utilization without causing any
additional overhead.

As it is not possible to perform two successive operators on the same input tuple in parallel, our
approach is to switch from conventional operator parallelism to data parallelism. Data parallelism cov-
ers both, intra-operator (different tuples, same operator) and inter-operator (different tuples, different
operators) parallelism.

To achieve this, DTE uses one thread per processor. Each thread is able to perform all operations
within the active pipeline segment. The input tuples for the pipeline segment are provided in a global
queue which can be accessed by all threads. Each thread takes one tuple at a time from the global
input queue and guides it the way through all the operators of the pipeline segment by subsequently
calling the procedures that implement the operators. A tuple does not leave the thread—and thus the
processor—during its way through the pipeline segment, until it has been processed by the last operator
or it failed to satisfy a selection or join predicate. As soon as one tuple has left a thread, the thread takes
the next input tuple from the queue. In the case that one tuple finds more than one partner in a join,
i.e. the operator produces more than one output tuple from one input tuple, the thread has to process
all these tuples before it can proceed with the next input tuple from the queue. Figure 3 sketches the
data threaded execution of a pipeline segment consisting of three joins on four processors.

There are no data dependencies between the threads. Thus, all threads start their processing simul-
taneously without any idle time, and none of them is idle until it finishes its work. In other words, there
is no startup execution delay and there is no idle time due to synchronization among the processors. The
only idle time that may occur is due to shutdown execution delay. As soon as a processor has finished
its work and there are no more input tuples in the global queue, it is idle until the other processors
have finished there work, too. This time is at most the time that one processor needs to process one
tuple through the pipeline segment. In cases of extreme skew, the performance of DTE suffers from this
shortcomming. We solved this problem by adding a simple but powerful redistribution mechanism to
DTE yielding DTE/R (Manegold and Waas, 1998). As situations with extreme skew are not relevant in
the context of this paper, we stick to the base version of DTE, for simplicity. The strategies presented in
the remainder of this paper also apply to DTE/R.

DTE provides automatic and dynamic load balancing between the processors, as each thread can
process the next input tuple as soon as it has finished the processing of the former tuple. Thus, all
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Figure 3: DTE

| name | description | value

n number of joins 1 to 16

[|Ri|]| | cardinality of base relations | 5k to 200k

v range of join attribute values | 1 < v < ||R;]|

1) attribute value distribution round-robin,

of join attributes uniform,

normall (mean=73, dev.=1%),
normal2 (mean=%, dev.=%),

2
exponential (mean=1%)
_ Ml

[ Z:]]

af ; augmentation factor of join ¢ | af;

Table 1: Query Parameters

processors are working as long as there are input tuples in the queue, i.e. neither startup delay nor
discretization error occur with DTE. DTE outperforms conventional pipelining strategies significantly
(Manegold et al., 1997).

In particular, this kind of load balancing—and thus efficient resource utilization—does not depend
on cardinalities. Therefore, the efficiency of DTE does not suffer from any errors when estimating
cardinalities and selectivities at compile time. If such errorslead to a non-optimal query tree, DTE cannot
compensate this error but still provides a stable execution in the sense of efficient resource utilization
without overhead, i.e. the situation cannot exacerbate any further.

Quantitative Assessment

In order to assess DTE quantitatively and to compare it to conventional pipeline execution (PE) as
presented in the introduction on page 1 (for details see also (Manegold et al., 1997)), we implemented both
strategies prototypically. Using this implementation, we ran several experiments on SGI PowerChallenge
and Onyx shared-memory machines with 4 processors each.

The queries investigated are marked by the parameters given in Table 1. For each configuration,
we first generate the base relations according to the query specifications, then build the hash tables
sequentially, and after that execute the strategy considered. To obtain stable results we take the median
of 10 runs.
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Wisconsin Benchmark. The initial set of experiments deals with running two queries, namely

joinAselB and joinCselAselB, of the Wisconsin Benchmark (Gray, 1993). We implemented the selection as

semijoin, thus, joinAselB and joinCselAselB consist of pipeline segments of length 2 and 3, respectively.
Trg

Figures 4 and 5 depict the relative execution times for joinAselB and joinCselAselB, respectively.
DTE

PE performs substantially worse than DTE, mainly due to discretization error, as in both queries the first
operator causes ten times as much work as the others. With DTE, each of the p processors used performs

1
—-th of the total work. With PE, p — x processors (z = 1 for joinAselB and z = 2 for joinCselAselB) do

p
1
0 -th of the total work, while x processors do

1
-th h.
10+ =z 10+ cac

The Average Case. The next series of experiments give an overall estimate for the average case. The
base relation sizes were chosen randomly from our portfolio and one of the five distribution types was used
to generate the attribute value distribution. For each query, all distributions were of the same type; the
particular parameters are chosen as given in Table 1. All experiments were carried out on 4 processors.

In Figure 6, the response times for round-robin attribute value distribution are depicted—again, the
values are scaled to the execution time of DTE. PE is limited by the number of processors and therefore
only values for 2, 3 and 4 joins are available. The execution time of PE is up to 2.2 times longer than
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that of DTE.

In Figures 7 through 10, the results for the remaining distributions—uniform, normall, normal2, and
exponential—are plotted. The savings are similar to the previous case.

Speedup and Scaleup. Besides this overall performance comparison, we also ran experiments to
measure the speedup and scaleup (DeWitt and Gray, 1992) of the different strategies. Figure 11 shows
the speedup behavior of PE and DTE for a two-join-query with af; = 1 and af, = 1/3 (see Tab. 1). DTE
provides near-linear speedup, whereas PE suffers from discretization error, obviously. Similarly, Figure 12
exemplary shows the scaleup behavior of PE and DTE for a two-join-query. We increased the weight of
the pipeline segment with the number of processors by increasing af , appropriately while leaving af, = 1.
DTE shows a negligible performance decrease of 1% when moving from one to two processors, but then,
its scaleup is constant. PE shows a significantly worse scaleup behavior. Experiments with other kinds
of queries show the same tendencies for both, speedup and scaleup.

The results obtained from the implementation of DTE are closed to our simulations results presented
in (Manegold et al., 1997) showing the adequacy of our simulator.
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name | description value
p number of CPUs 1-8
/) number of disks 1-38
Tu time to access one tuple in memory 10.0 ps
Ts time per tuple to build a hash table 5.5 ps
Tp time to probe one tuple against a hash table | 4.0 us
Te time to generate one result tuple 30.0 ps
T time to invoke I/O for one block 7.4 ps
Tw time to setup I/O system 1.0 ms
Ts average I/0 seek time 1.2 ms
bw I/O bandwidth per disk 3 MB/s
bs size of one I/O block in bytes 8 kB
b
Tr = Wf;’ I/O time to read one block 2.6 ms
tsr size of tuples of relation R in bytes 100-200 Bytes
||R|| | size of relation R in tuples 10° - 2-10°
t
IR | = [7”}2”;; S’ﬂ, size of R in blocks 13 - 4883
N number of joins 4-16

Table 2: Notation

BUILDING AND PROBING

Before we discuss the different strategies how to combine build phase and probe phase, we introduce
further notation we use in the remainder of this paper. Build(R;) (short B;) denotes the building of the
i-th hash table H; (cf. page 3). This includes reading R; from disk. Alloc(H;) (A;) denotes the allocation
of memory for hash table H;. Releasing the respective memory is denoted by Free(H;) (F;). Probe(I;)
(P;) denotes the probing of intermediate result I; through the i-th join within the pipeline using DTE.
Probe(Z;..I;) (P;..;) denotes the parallel probing of the joins ¢ through j (1 < i < j < N) using DTE.
Thus, both Probe(I;) and Probe(I;. ;) represent the execution of the respective subset of operators of the
whole pipeline (Probe(I;..Ix)). Table 2 gives further notation and some basic cost values taken from
literature. In Figure 13, we present the cost functions for single operations we use in the remainder of
this paper.

Deferred Probe

A naive way to combine build and probe phase is to execute them one after the other: First, all hash
tables are built, and after that, the probing is done (using DTE, in our case). We call this deferred probe.

The execution of the whole pipeline segment, i.e. build and probe phase, proceeds as follows: Alloc(H);
Build(R;); ... ; Alloc(Hy); Build(Ry); Probe(Iy..Ix); Free(Hy); ... ; Free(Hy). For simplicity of presen-
tation, we neglect the time consumed by Alloc(H;) and Free(H;). Assuming that CPU and I/O can overlap
perfectly, the execution times of each single Build(R;) as well as the execution time of Probe(I;..Iy) are
given by the maximum of the corresponding CPU and I/O times. Thus, the total execution time of the
whole pipeline segment is (cf. Fig. 13 and Tab. 2 for details):

Tguitd + Tprobe

N

> max{0s(R;) , Cp(Ry)} +
=1

i —
Tdefer -

max {Or(I1) + Or(In41) , Cpz(I1..IN)}.

10



I/0 time without disk arm contention (sequential I/0):

Os(Ri) = Ts+ ['Z"'] (Tw + Tr)
I/0 time with disk arm contention (random I/0O):
O.(R) = [%} (Ts + Tw + T#)
CPU time to initialize I/O and to access a relation in memory:
ety =[] 7+ [ 7
CPU time to build a hash table (incl. initialization of I/0O):
oy = [UBL] 1+ [LEL ) z,

CPU time to probe a join:
I; I;
ority = [UBN] 7, 4 [lssall] 7,
CPU time to probe joins (incl. fetching the input, storing the output and initialization of I/0s):
sz(Ii..Ij) = CZ(IZ)—F Op(Ii..Ij)+ CE(IJ‘+1)
convenient abbreviation (® € {Os,0,,Cz,CB,Cp}):

®(R;..R;) = ZJ:‘I)(RA:)
k=i

Figure 13: Cost Functions

Suppose that either both phases are I/O-bound
ViE{l,...,N}: OS(RZ’) > CB(Ri)
N 0,~(I1) + OT(IN_H) > sz(Il..IN)
or both phases are CPU-bound
ViG{l,...,N}: Os(Ri) < CB(RZ)
N Or(Il) + OT(IN_H) < sz(Il..IN),
then deferred probe provides minimal execution time:
Toeter = max{Os(R1-.Ry) + Op(I1) + Or(In11)
Cs(Ry1..RN) + Cpy(I1..IN) 1.

However, in most environments the build phase is I/O-bound while the probe phase is CPU-bound—at

least if the pipeline is long enough—, i.e.

ViE{l,...,N}: OS(RZ') > CB(R,)
A Or(Il) + OT(IN+1) < CPm(IlIN)

In this case, deferred probe has one shortcoming: Resources are not used as efficiently as theoretically
possible. During the build phase, CPU capacities are left idle, while during the probe phase, I/O capacities

are not fully used. Thus, the execution time is not optimal:

(%) .
Tdefer = Os(Rl--RN)+CPz(I1..IN) > Tdmm

efer*

11
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Figure 14: Sample CPU load (deferred probe)
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Figure 15: Sample I/0 load (deferred probe)

Figures 14 and 15 depict CPU and I/0O load of deferred probe evaluating a pipeline segment with four
joins.

Multi-user and multi-query environments may balance the utilization of CPU and I/O. But these
environments suffer form the exhaustive use of memory of deferred probe. The memory for the hash
tables is allocated—possibly long time—before the hash tables are used in the probe phase and all
memory is released only after the whole pipeline is executed (cf. Fig. 16).

In multi-user or multi-query environments, not only execution time (T') and maximal memory usage
(m) should be regarded, but also the memory usage area (M = amount of memory usage x time memory
is occupied).

Floating Probe

To overcome the shortcomings of deferred probe, our approach is to let the build phase and the probe
phase overlap. Opposed to deferred probe, this results in a single phase that integrates build and probe
phase. Thus, resource utilization can be balanced by combining I/O-bound build and CPU-bound probe.
We call our new strategy floating probe.

The point is, Probe(I;) can be started as soon as Build(R;) has finished, i.e. Probe(;) can be executed
in parallel with Build(R;y1). Thus, compared to deferred probe, some of the probe work is done before
the build of the last hash table is finished. As building the hash tables is I/O-bound the elapsed time
until all hash tables are build cannot be reduced. However, the probe work that has to be done after the
last build is reduced and so is the overall execution time.

12
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Figure 17: Sample schedule floating probe

Two cases have to be distinguished first: Either Probe(l;) is CPU-bound—e.g. I; already resides in
memory, is received via a fast network, or even reading from disk is faster than performing the probing—or
Probe(I;) is I/O-bound, i.e. reading I; from disk is slower than performing the probing.

Probe(l;) is CPU-bound. In this case, floating probe proceeds as follows (cf. Fig. 17 for a sample
schedule): At the beginning, the hash table H; of the first join is built (Build(R;)). Thereafter, Probe(I;)
and Build(R.) are started simultaneously and executed concurrently. As the output tuples produced by
Probe(I;) cannot yet be processed by Probe(I), they have to be buffered. To avoid intermediate I/O, this
is done in memory. If Probe(I;) ends before Build(R>), Hy is dropped. Otherwise, as soon as Build(Rx)
has finished, Build(R3) is started and the probe is extended, so that the remaining tuples of I are piped
through both probes (Probe(I;..I2)). As before, the output of Probe(l;..I5) is buffered in memory. If
then Probe(I;..I5) ends before Build(R3), H; is dropped and the part of I» buffered in memory during
Build(R3) is processed through Probe(lz). Otherwise, the probe is extended to Probe(I;..I3), as soon as
Build(R3) is done. This proceeds until the last hash table Hy is built. After that, only probing is done
until all tuples are processed: For each I; that is partly buffered in memory Probe(I;..Iy) is executed.
Figure presents floating probe as pseudo code. The Procedures that are used here and with the pseudo
codes of the following strategies are presented in Figure 18.

With floating probe, the pipeline segment is dynamically extended to the next join once its hash table
is built. Thus, allocated memory is used as soon as possible. On the other hand, hash tables are dropped
immediately after the respective probe is done. Thus, allocated memory is released as soon as it is no
longer needed.

Figures 20 and 21 depict CPU and I/0 load of floating probe evaluating a pipeline segment with
four joins—I; is receive via the network and I is written to disk—and Figure 22 shows the respective
memory usage.

Probe(l;) is I/O-bound. Now, consider the case reading I; from disk is slower than performing the
probe. As I; is also fully declustered across all disks, there is no sense in running Probe(I;) and Build(R3)

13



procedure Init() do // initialization of global variables
toBuild[1..N] :={1,..,1}; // part of H; that has to be built

toProbe[l..N] :={1,..,1}; // part of I; that has to be probed

allocated[1..N] :=no; // memory for H; allocated ?
next :=1; // next H; that has to be built
first i=1; // first I; that has to be probed
last :=0; // last I; that can be probed

built :=0; // part of H; that has been built
probed :=0; // part of I; that has been probed

od;

procedure BuildOnly(R,c.:) do
if allocated[next] = no then Alloc(Hnest); allocated[nezt] :=yes; fi;
Build(Ryeot); toBuild[next] :=0; next++; last ++;

od;

procedure ProbeOnly(Ifirsi..J1ast) do

Probe(Ifirst..Liast); probed :=toProbe[first];

foreach ¢ € {first,...,last} do toProbe[i]-=probed; od;

while toProbe[first) =0 A first < N do first ++; Free(Hfirs:); od;
od;

procedure BuildAndProbe(Rneat, Ifirst. - Liast) do
if allocated[nert] = no then Alloc(Hpest); allocated[next] :=yes; fi;
do built :=Build(Rnest) || probed :=Probe(Ifirst.. Jiast);
until first of both ends;
foreach i € {first,...,last} do toProbe[i]-=probed; od;
while toProbe[first) =0 A first < N do first ++; Free(Hfirs:); od;
toBuild[next] -= built;
if toBuild[nexzt] =0 then next++; last++; fi;
od;

Figure 18: Procedures

in parallel due to disk access contention. We present two strategies, how to proceed in this case.

The first is to defer Probe(l3) until enough, say g, hash tables are built, such that executing
Build(R,41) and Probe(l;..I;) concurrently is approximately CPU-I/O-balanced, or at least such that
executing Probe([;..1,) is CPU-bound. Thus, running Probe(I;) I/O-bound is avoided. But on the other
hand, the start of probing is deferred and Build(R2) through Build(R,) are run I/O-bound. As soon as
Probe(I;..1,) is started, execution continues as usual. We call this strategy late probing (cf. Fig. 23a).

The second strategy is to execute Probe(l) right after Build(R;), materializing I» completely in
memory, and to defer Build(R2) until Probe(I;) is done. As soon as Build(R:) has finished, processing
resumes with starting Build(R3) and Probe(I;) simultaneously. Thus, Probe(l1) is run I/O-bound as well
as Build(Ry) thereafter. But on the other hand, probing is started as soon as possible. We call this
strategy early probing (cf. Fig. 23b).

The case, that the result relation of the pipeline segment is not kept in memory, but rather written
to disk, does not need any special treatment. Probe(Iy) can only be processed after Build(Ry) is done.
Hence, there is no I/O interference.
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begin
Init();
do
if nert < N then
if first < last then
BuildAndProbe(Rneat, Lfirst - Liast);
else /* first > last */
BuildOnly(Rneat);
fi;
else /* next > N */
ProbeOnly(Ifyst. - Liast);
fi;
until first > N;
end.

Figure 19: Floating probe (CPU-bound Probe(1;))

[l Build(R;)
[ Build(Ry)
[[] Build(Rs)
D Build(R,)
Probe(1,)

- Probe(l,)

& Probe(l3)
& Probe(l,)
t

10 20 30 40 50 60 70

Figure 20: Sample CPU load (floating probe)

The first advantage of floating probe is that the overall execution time is reduced as some of the probe
work is done before Build(Ry) has finished. In our example, deferred probe needs 70 units of time,

/O

AANAARN A [l Build(Ry)
[ Build(R,)
AN l:, BUi|d(R3)
A [] Build(R,)
AN @ Probe(l4)

ANANANANA

} } 3 _|—|_>_t

10 20 30 40 50 60 70

Figure 21: Sample I/O load (floating probe)
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10 20 30 40

Figure 22: Sample memory usage (floating probe)

Init();
do
BuildOnly(Ryext);
until ProbeOnly(Ifis:..liast) is I/O-bound;

a) Replacement for Init() in Fig. : late probing

Init();
BuildOnly(Rneat); // next =1
ProbeOnly(Ifiyst..Jiast); [/ first = last =1

b) Replacement for Init() in Fig. : early probing

Figure 23: Floating probe (I/O-bound Probe(I;))

whereas floating probe needs only 52 (cf. Figs. 14,15,20,21). There is a lower bound, as the execution
time cannot be less than needed to do the total work without any overhead or synchronization. This
bound is

T = max{Os(Ri..RN) + Os(I1) + Os(Iny1) ,
CB(Rl..RN) + sz(Il..IN) }
(%)
< Os(Ri..RN) + Cpg(I1..IN) = Tyefer-

Obviously, if either building or probing dominates the overall execution costs, i.e. either Os(R;..RNn) >
Cpy(I1..IN) or Cpy(I1..IN) > Os(R;..RN), then floating probe cannot perform much better than deferred
probe. Further, the minimal execution time of floating probe cannot be less than half the execution time
of deferred probe:

NN
T}rlg;ltj Z max{Os(Rl..RN) s sz(IlIN)}
*k
>i Os(Rl..RN)+CPz(Il--IN) _ Tefer ( )
= 2 o2

Here, equality holds, (}) iff Os(I1) = Os(Iny+1) =0 A Os(R:..Ry) > Cp(Ry1..RN) + Cpy(I1..In), and
(1) iff Os(R1--Rn) = Cpy(I1.-IN).

The second advantage of floating probe is reduced memory consumption. If any probe finishes before
Build(Ry) is done, the corresponding hash table is released, and thus, the memory usage area M (cf.
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page 12) is smaller than that of deferred probe. In our example, the memory usage area of deferred probe
amounts to 2000 units, whereas floating probe needs only 1219 units (cf. Figs. 16 & 22).

A drawback of floating probe is, that parts of intermediate results have to be materialized in memory.
This causes additional CPU costs and additional memory is needed. But the results of our simulation
experiments show, that floating probe outperforms deferred probe, despite these overheads.

Neglecting these overheads—and most of the synchronization that arises due to data dependencies—
for the moment, the execution time of floating probe is:

Thoat = maX{OS(Rl) ) CB(RI)} +
max{O;(Rz..Rn) + Os(I1) ,
CB(RQ.-RN) + Cz(Il) + Cp(Il..INfl)} +

max{O0;(In+1) , Cp(In) + Cy(In+1)}
® Os(Ry) +
max{Os(Rz..RNn) + Os(I1) ,
Cg(R2..RN) + Cp(I) + Cp(L..In—1)} +

max{Os(Iny1) , Cp(IN) + Co(In41)}

ANALYSIS

According to the presentation of floating probe in the previous section, it seems to be rather complicated
to implement this strategy, as a lot of explicit scheduling overhead is necessary. In the following, we discuss
a rather simple but effective method to avoid this scheduling overhead and describe our simulation model.
Thereafter, we present the results of our experiments comparing deferred probe and floating probe.

Simulation Model

Although both phases are no longer executed one after the other, they are still in some sense independent
of each other. The only dependency between the two phases is that a hash table has to be built before
the respective intermediate result can be probed against it. Thus, our solution is to implement the build
phase and the probe phase with separate threads. The only communication between build thread and
probe thread is that the build thread has to inform the probe thread as soon as it has built a hash table.
Using this information, the probe thread can decide, whether it can probe the current tuple through the
next join or whether it has to materialize it as the next hash table is not yet built. Both threads are
started concurrently. To guarantee, that the probe thread only uses those CPU resources that are not
used by the build thread, the probe thread is run with lower priority than the build thread. Using this
implementation technique, scheduling is done by the operation system.

In order to compare floating probe to deferred probe, we designed and implemented an event driven
simulator using the Sim++ package (Fishwick, 1995). The simulator is very detailed, i.e. it simulates each
single page-I/O-operation as well as each single tuple-operation using the execution times from Table 2.
According to the aforementioned strategy, the simulator assumes distinct build and probe threads, one
of each per processor.

Experiments

We randomly generated pipeline segments of several classes. Each class is characterized by the length
N € {4,8,16} of the pipeline segment and the location L of I; and Inxy1. L(I;) = disk means that
I is initially stored on disk and L(I;) = net means that I; is received via network. Analogously,
L(In41) = disk means that I, finally has to be stored on disk and L(Iyy1) = net means that Ini1
is sent to the network. The location of Iyy; affects both strategies equally: If L(Iny1) = disk, in both
strategies I/O is needed during Probe(Iy), i.e. after Build(Iy) is done. If L(In41) = net, however, no
I/0 is needed during Probe(Iy) in either strategy. For this reason, we restrict our discussion here to
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the two cases that either L([;) = L(In+1) = disk, or L(I1) = L(In41) = net. In the second case, no
I/0 is needed to evaluate the probe phase. The results for the remaining two cases are similar to those
presented.

We randomly generated 360 different segments for each class, with tuple sizes between 100 and 200
bytes and relation sizes between 10° and 2 - 105 tuples. All segments fulfilled condition (x) on page 11.

For each segment S]L’N, we simulated the execution with both deferred probe and floating probe
for different degrees of parallelism (p € {1,2,4,8}, d = p). If I} and In41 were located on disk, we
simulated the execution for both variants of floating probe, early probing and late probing. The differ-
ences between both variants were not significant, thus, we present only those for late probing here. To
compare the performance of deferred probe and floating probe, we calculated the relative execution time
Tﬂoat(S.L’N, D) /Tdefe,(Sf ’N, p). Within each class—identified by L, N, and p—we calculated the average

j
relative execution time over all the n = 360 queries:

— 1 o T'fl t(S'L,Nap)
Tf/d(LaNap) = - e

LN -
n j=1 Tdefer(Sj ,D)

Figures 24 and 25 show the average relative execution times with (L = disk) and without probe-I/O
(L = net), respectively. Floating probe outperforms deferred probe in any case (Tt/4(L, N,p) < 1). The
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improvement increases with the length of the pipeline segment, as then the contribution of Build(R;) and
Probe(Iy)—mno improvement is possible during these operations due to data dependencies—to the total
execution time becomes relatively small. Further, the results show that the performance gain of floating
probe over deferred probe is bigger if no probe-I/O is needed. This is obvious, as without probe-I/O,
more probe work can be done concurrently with the build.

Using floating probe instead of deferred probe saves up to 27% for L = disk and up to 31% of
execution time for L = net. Remember, that at most 50% can be saved (cf. (*) on page 16). The
average saving amounts to approximately 16% for L = disk and 24% for L = net.

In addition to the execution times, we also examined the memory usage of floating probe and deferred
probe. During the simulation, we calculated the total memory usage M (SJL N p). Analogous to the aver-
age relative execution time, we calculated the average relative memory usage M; /d(L, N,p). Figures 26
and 27 show the results with (L = disk) and without probe-I/O (L = net), respectively. Again, float-
ing probe performs better—i.e. needs less memory—than deferred probe. Here, the differences between
L = disk and L = net are negligible. Floating probe saves up to 80% (55% on average) of memory
allocation compared to deferred probe.
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CONCLUSION

In this paper we addressed the topic of efficient resource utilization to boost query execution in parallel
database systems. We presented floating probe, a new technique to evaluate pipeline segments in shared-
everything environments which overcomes severe drawbacks of former methods. Floating probe balances
the CPU and I/O workload between the I/O-bound build phase and the CPU-bound probe phase of
pipeline segments optimally with respect to the data dependencies between both phases. Furthermore,
floating probe (1) provides shorter execution times and (2) consumes less memory than deferred probe.
Floating probe achieves these improvements without explicit scheduling, thus, floating probe neither
needs any a priori cost estimations nor does it cause any scheduling overhead.

These properties make floating probe an easy-to-control and transparent means of parallelism: only
the size of the pipeline segment and the degree of parallelism have to be determined by the optimizer
while the execution strategy then guarantees the best execution possible. Floating probe is a building
block to comprehensive query execution in parallel databases.

In the future, we will focus on the investigation of other means to incorporate further optimization
decisions into the execution technique and, therefore, liberating the optimizer from tasks like finding the
appropriate length of a pipeline segment.
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